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Alzheimer’s disease is a neurodegenerative disorder characterized by cognitive impairments
that progressively affect motor skills and cognitive abilities. Early diagnosis is crucial for slow-
ing down brain damage and improving the quality of life for affected individuals. This study
employs machine learning and deep learning approaches to analyze data from Alzheimer’s
patients, focusing on pen gesture dynamics and task-related images. Common deep learning
architectures (VGG19, ResNet50, InceptionV3, and InceptionResNetV2) are utilized, and
machine learning classifiers are tuned for optimal performance. Additionally, deep features
are extracted from images to enhance analysis. It was confirmed that, by combining these
approaches we can diversify the proper use of discriminant methods, to obtain better results
depending on the type of written task.

1 INTRODUCTION

Alzheimer’s disease is a prevalent neurodegenerative disorder worldwide,
characterized by the progressive degeneration of nerve cells leading to cognitive
impairments and motor skill decline. As the most common form of dementia,
Alzheimer’s disease affectsmillions of individuals and poses significant challenges
to healthcare systems and society as a whole. Early diagnosis plays a crucial
role in delaying disease progression and improving patient outcomes. However,
accurately diagnosing Alzheimer’s disease in its early stages remains a complex
task.

In recent years, advancements in machine learning and deep learning tech-
niques have shown promise in supporting the diagnosis and understanding of
Alzheimer’s disease. By leveraging the power of these computational approaches,
researchers can analyze diverse data sources to uncover meaningful patterns and
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markers of the disease. One such approach is the analysis of handwriting dynam-
ics, which has been identified as one of the early skills influenced by Alzheimer’s
disease onset.

According to the Alzheimer Organization [1] In Alzheimer’s, the neurons dam-
aged first are those in parts of the brain responsible for memory, language and
thinking. As a result, the first symptoms tend to be memory, language and think-
ing problems. This leads to notable issues when simple motor tasks as speaking or
writing, where patients struggle with following up with tasks as joining or keeping
a conversation or a writing pattern.

Based on previous research, the target in this project is to combine different
approaches in machine learning and deep learning methodologies to analyze data
from Alzheimer’s disease patients. The study focuses on two key aspects: the
analysis of pen gesture dynamics during various tasks and the examination of
the same task-related images using deep learning architectures. By integrating
these approaches, a comprehensive understanding of the cognitive impairments
associated with Alzheimer’s disease can be achieved.

In addition to the deep learning analysis, the project will investigate the ex-
traction of deep features from images. These deep features will then be utilized
as inputs to machine learning classifiers, enabling a fusion of the information
derived from both approaches.

The process is described as follows:

• Data Description and Acquisition

• Feature Selection and Preprocessing

• Classifier Selection and Hyperparameter tunning

• Deep Learning Approach

• Deep Features Extraction

• Results Analysis and Discussion

2 DATASET DESCRIPTION

Data is obtained by asking eachparticipant to complete a series of tasks, divided
in different categories and levels of difficulty, being the next taskmore demanding
than the previous one in terms of the cognitive functions required to fulfill the
task.
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Overall, there are 25 tasks divided in three groups: Memory tasks (MT), copy
and reverse copy tasks (CT) and graphic tasks (GT). All of them need to be written
on A4 white sheets, which are stapled and placed on a graphic tablet which records
the movements of the pen used by the examined subject [5].

The description of the tasks can be seen in 1 as explained in [5, 6]. For the
scope of the project, a subset of the main tasks is utilized: tasks 1, 2, 3, 4 and 10.

Task 1 is a regular task used within the frame of written tasks for diagnosing
cognitive impairments. Tasks 2 and 3 evaluate wrist joint movements and finger
joint movements. Task 4 allows testing the automaticity of movements and the
regularity and coordination of the sequence of movements[5, 6]. Task 9 allow
testing the motion control alternation and Task 10 is a type of task designed to
observe the variation of the spatial organization of the patient[5, 6].

As for the number of samples, the provided dataset, for both writing dynamics
and images, consists of 166 observations, from which 88 belong to known affected
patients, and 78 from the healthy control group.

In the writing dynamics, there are 92 features including ID of the patient, Sex,
Age, the type of work the patient do for a living, as it is considered to be a subject
of matter when diagnosing, the instruction level and the label: Healthy control or
patient with Alzheimer’s disease. The rest of the features describe the interaction
of the pen while doing the tasks, based on observations while the pen is on the
paper or in the air.

As described in [2] many studies in the literature show significant differences
in patients’ motor performance between in-air and on-paper traits. In-air refers
to when the pen is lifted from the sheet.

Two types of features can be considered: function features and parameter
features. Thefirst characterize handwritingmovements in terms of time functions,
whereas the second are computed bymeans of a transformation upon the function
features. The most common function features are: (x, y) coordinates, pressure,
azimuth, altitude, displacement, velocity and acceleration. Some of these features
are directly recorded by the acquisition device, whereas others are numerically
derived. Typically, the most used function features are velocity and acceleration:
the former contains information related to the slowness of movements, whereas
acceleration changes allows tremor to be revealed. As for the features related
to the in-air movements, it has been recently demonstrated that they convey
very useful information for discriminating the movements of subject affected by
Alzheimer’s Disease.
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Task# Task Description Task
Type

1 Signature drawing MT

2 Join two points with a horizontal line continuously for four times GT

3 Join two points with a vertical line continuously for four times GT

4 Retrace a 6cm-diameter circle continuously for four times GT

5 Retrace a 3cm-diameter circle continuously for four times GT

6 Copy the letters ’l’, ’m’ and ’p’ CT

7 Copy the letters ’n’, ’l’, ’o’ and ’g’ in adjacent rows CT

8 write the letter ’l’ 4 times, continuously in cursive format CT

9 write the bigram ’le’ 4 times, continuously in cursive format CT

10 Copy the word "foglio"1 CT

11 Copy the word "foglio" above a line CT

12 Copy the word "mamma" CT

13 Copy the word "mamma" above a line CT

14 Memorize the words "telefono", "cane" and "negozio"2 and rewrite them MT

15 Copy in reverse the word "bottiglia"3 CT

16 Copy in reverse the word "casa"4 CT

17 Copy six words CT

18 Write of an object shown in a picture MT

19 Copy the fields of a postal order CT

20 Write a simple sentence under dictation MT

21 Retrace a complex form GT

22 Copy a telephone number CT

23 Write a telephone number under dictation MT

24 Draw a needle clock pointing 11:05 GT

25 Copy a paragraph CT

Table 1: Tasks description and type [5, 6]
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3 FEATURE SELECTION
3.1 BRIEF DESCRIPTION

In the previous section the dataset structure was described. In this section we
present the subset selection techniques utilized to obtain different results.

The first natural approach was using the complete dataset for each of the
selected tasks. This approach served as a first contact and exploratory analysis.

Then, based on the feature analysis done in [2] the approach used to select
features was separating them into two groups: the ones reflecting the writing
dynamics on-air (OA) and the ones doing it on-paper (OP). By visual inspection
done with ydata-profiling package, it was seen that two of the features had no
relevance at all (all values zero) so we removed those from all tasks. These features
are:

• AveragePenPressureMeanOA

• AveragePenPressureStdOA

Both belonging to on-air dynamics (OA).
In this fashion, we have three datasets: The full dataset, the on-air version

in which all OP features were removed and the on-paper version in which all
OA features were removed. An important detail is that features related to the
background of the participant are kept in all versions of the datasets.

3.2 FEATURE SELECTION

One of the best practices in machine learning, is to work with the most de-
scriptive set of features of a given dataset. This will help reducing several issues
that may be encountered dealing with data like noise or overfitting and improves
the computational efficiency.

In order to find a set of features that will help in better discrimination between
healthy and affected patients, we used recursive feature elimination (RFE) with
cross validation (CV) and random forest (RF).

RFE performs a greedy search to and the best performing feature subset, based
on the backward elimination strategy. Starting from the whole set of available
features, the RFE algorithm iteratively creates models and determines the worst-
performing feature at each iteration. Then, it builds the subsequent models with
the features leftover until all the features are explored. If the data contain N
features, in the worst case RFE evaluates N2 subsets. The algorithm provides as
output the feature subset providing the best performance among those tested.
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An important detail when working with RFE is that it requires an idea or
criteria to start reducing dimensionality. That criteria in this case will be the
feature importance, obtained after fitting the studied data into a Random Forest.
After obtaining the importance of all features, RFE will be executed with proper
CV in order to start the dimensionality reduction process.

As for the Random Forest, the number of trees of such forest is called number
of estimators. In the case of the one used to reduce the dimensionality, were
used two versions, one using 10 estimators and one with 400 estimators so we can
compare if more estimators necessarily means better performance.

dataset dataset version

Complete dataset with no FE

Complete dataset with FE 10 RF estimators / 400 RF estimators

OA dataset with no FE

OA dataset 10 RF estimators / 400 RF estimators

OP dataset with no FE

OP dataset 10 RF estimators / 400 RF estimators

Table 2: Datasets used after feature extraction

This process will be done for each dataset: complete, OA and OP. In summary,
we have the complete dataset without feature selection, the complete dataset after
feature selection, the OA dataset after feature selection and the OP dataset after
feature reduction, as indicated in 2.

3.3 FEATURES PER TASK

Since the task is different among each other, the number of features per task
will vary according to the number of estimators used, being the final result the
ones presented in 3 4 5:
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task # dataset # of features

1 Complete dataset with no FE 88

Complete dataset with FE - 10 RF estimators 17

Complete dataset with FE - 400 RF estimators 77

OA dataset with FE - 10 RF estimators 43

OA dataset with FE - 400 RF estimators 8

OP dataset with FE - 10 RF estimators 34

OP dataset with FE - 400 RF estimators 26

2 Complete dataset with no FE 88

Complete dataset with FE - 10 RF estimators 7

Complete dataset with FE - 400 RF estimators 73

OA dataset with FE - 10 RF estimators 21

OA dataset with FE - 400 RF estimators 40

OP dataset with FE - 10 RF estimators 16

OP dataset with FE - 400 RF estimators 28

Table 3: features per dataset, tasks 1 and 2
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task # dataset # of features

3 Complete dataset with no FE 88

Complete dataset with FE - 10 RF estimators 2

Complete dataset with FE - 400 RF estimators 2

OA dataset with FE - 10 RF estimators 36

OA dataset with FE - 400 RF estimators 15

OP dataset with FE - 10 RF estimators 7

OP dataset with FE - 400 RF estimators 11

4 Complete dataset with no FE 88

Complete dataset with FE - 10 RF estimators 34

Complete dataset with FE - 400 RF estimators 72

OA dataset with FE - 10 RF estimators 40

OA dataset with FE - 400 RF estimators 1

OP dataset with FE - 10 RF estimators 26

OP dataset with FE - 400 RF estimators 44

Table 4: features per dataset, tasks 3 and 4
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task # dataset # of features

9 Complete dataset with no FE 88

Complete dataset with FE - 10 RF estimators 32

Complete dataset with FE - 400 RF estimators 5

OA dataset with FE - 10 RF estimators 4

OA dataset with FE - 400 RF estimators 19

OP dataset with FE - 10 RF estimators 7

OP dataset with FE - 400 RF estimators 16

10 Complete dataset with no FE 88

Complete dataset with FE - 10 RF estimators 71

Complete dataset with FE - 400 RF estimators 16

OA dataset with FE - 10 RF estimators 3

OA dataset with FE - 400 RF estimators 6

OP dataset with FE - 10 RF estimators 45

OP dataset with FE - 400 RF estimators 43

Table 5: features per dataset, tasks 9 and 10

Next step is defining the set of classifiers and the proper hyperparameters to
tune in order to compare their performance.

4 CLASSIFIER SELECTION AND HYPERPARAMETER TUNING

In order to get a performancebenchmark, it is necessary to test amongdifferent
classifiers. For the sake of this project we used the following classifiers:

• Decision Tree classifier (DTC)

• Gradient Boosting Classifier (GBC)

• Linear Discriminant Analysis (LDA)

• Random Forest Classifier (RFC)
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• Support Vector Machine (SVM)

• Extreme Gradient Boosting (XGB)

Is worth noting that Decission trees are baseline for random forest, as those
forest are built of units of DTC. Another set of ensemble methods used are the
boosting ones, from which Gradient Boosting Classifier and Extreme Gradient
Boosting were selected. Support vector machines are widely known classifiers
used in machine learning and LDA, aside of being a dimensionality reduction
method, is itself a classifier.

Each of those classifiers have proper parameters involved in the way data is
processed within. Each of this can be changed in order to achieve better results,
and that is the process of hyperparameter tuning within the frame of k fold cross
validation. The goal is, by fitting each classifier according to the size of the training
and testing set, finding the best set of these parameter in order to get the best
possible performance rate. Accuracy in this case.

A fundamental step when dealing with data is data preprocessing. Several
classifiers benefit fromhaving the data curated for the sake of fitting and delivering
better results. This step is done inside the pipeline, so we are not limited to just
one scaling type. Among scalers we tested standard, robust, minmax, maxabs,
quartile, transformer and no scaler.

Whenpreprocessing the data, outlierswere also treatedwith differentmethods,
namely z-score and its modified version, interquartile range and no detection.
Depending of the position of the outlier, if any, the imputation will be done with
either the 5 or the 95 percentile.

So, within a 5-fold cross validation as a subset selection strategy, the pipeline
will actively search the best combination of parameters, scalers and outlier re-
moval techniques. The hyperparameters of each of the classifiers are described
in the table below:
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Classifier Hyperparameters Values tested

Decision Tree criterion gini, entropy

max depth 2,5,20, None

min samples leaf 1, 5, 10

max leaf nodes 2, 5, 10, 20

Boosting Classifier # estimators 50, 100, 200

learning𝑟𝑎𝑡𝑒 0.1, 0.01, 0.001

max depth 3, 5, 7

min samples split 2, 5, 10

min samples leaf 1, 2, 4

max features sqrt, log2

Linear Discriminant Analysis solver svd, lsqr, eigen

Random Forest # estimators 100, 200

max depth 10, 20, 50, 100, None

min samples leaf 1, 2, 4

min samples split 2, 5, 10

Support Vector Machine kernel linear, poly, rbf, sig-
moid

C 0.1, 1, 10, 100, 1000

gamma 1, 1e-1, 1e-2, 1e-3, 1e-
4

Extreme Gradient Boosting min child weight 1, 5, 10

gamma 0.5, 1, 1.5, 2, 2.5

subsample 0.6, 0.8, 1

col sample by tree 0.6, 0.8, 1

max depth 3, 4, 5

Table 6: Classifiers and possible values used in hyperparameter tuning
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5 DYNAMIC FEATURES SELECTION EVALUATION

Being selected the different set of features and the classifiers with the hyperpa-
rameters to be tuned, is a common question wonder if the feature selection indeed
help to better discriminate between health and cognitive impaired patients. After
running the complete fitting of each subset of features to each of the selected
classifiers, we average the results of each of the scores obtained, using it as final
value.

In order to summarize the results, they are organized in tables 7-12, using bold
to highlight the best achieved results.

OA OP All dataset

Task Full RF10 RF400 Full RF10 RF400 Full RF10 RF400

1 68.6 69.2 69.8 68.7 69.8 71.1 69.2 68.7 69.2

2 68.7 65.7 62.8 69.8 71.7 73.5 69.3 70.5 69.3

3 68.7 66.3 65.1 67.5 70.5 68.7 66.9 69.9 69.9

4 68.7 63.9 68.6 67.5 68.7 69.2 68.7 72.3 68.6

9 68.1 58.9 68.1 68.1 71.7 68.1 68.1 64.4 68.1

10 68.7 72.9 74.6 68.7 60.3 68.6 68.7 61.51 68.6

Table 7: Classification results achieved by DTC
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OA OP All dataset

Task Full RF10 RF400 Full RF10 RF400 Full RF10 RF400

1 70.5 65.7 69.9 74.2 74.7 68.7 72.3 66.9 72.3

2 72.9 75.3 72.3 70.5 71.7 72.9 71.1 74.7 71.1

3 69.9 70.5 73.5 73.4 74.1 75.3 71.7 73.4 68.0

4 68.1 64.5 67.4 70.4 65.6 70.5 70.5 69.3 69.9

9 65.0 60.1 67.4 72.3 65.0 75.9 66.9 66.2 69.8

10 68.0 65.0 75.3 71.0 66.9 70.5 69.9 65.0 75.9

Table 8: Classification results achieved by GBC

OA OP All dataset

Task Full RF10 RF400 Full RF10 RF400 Full RF10 RF400

1 66.7 69.1 66.9 69.3 62.1 69.8 59.6 62.1 64.5

2 62.0 65.0 62.0 65.6 66.3 71.7 60.2 69.9 62.7

3 63.9 69.4 69.3 59.6 70.4 68.0 53.6 70.4 70.4

4 63.2 62.1 68.0 64.5 63.9 67.6 63.3 69.3 68.7

9 62.6 65.0 64.5 63.9 69.3 68.7 59.6 63.3 69.9

10 57.3 69.9 65.7 65.0 69.3 64.4 51.2 61.4 70.5

Table 9: Classification results achieved by LDA
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OA OP All dataset

Task Full RF10 RF400 Full RF10 RF400 Full RF10 RF400

1 69.8 69.9 72.9 73.5 73.5 75.3 71.7 74.7 71.6

2 72.3 74.1 72.3 68.6 71.0 71.7 71.1 74.7 72.3

3 70.5 66.9 71.7 72.2 74.0 74.1 71.1 69.8 70.4

4 68.1 66.3 67.4 70.5 71.1 71.1 71.8 69.3 71.7

9 63.2 69.2 68.0 68.7 68.7 72.9 66.2 67.4 69.2

10 68.0 66.2 74.1 71.7 69.8 71.0 70.4 67.5 73.5

Table 10: Classification results achieved by RFC

OA OP All dataset

Task Full RF10 RF400 Full RF10 RF400 Full RF10 RF400

1 66.9 71.7 70.5 72.9 71.0 74.6 65.6 72.3 69.2

2 68.1 68.7 71.1 72.9 69.2 72.9 69.9 70.5 71.1

3 66.9 65.7 71.0 71.0 72.3 72.2 69.2 72.2 72.2

4 66.9 71.1 71.6 68.7 68.1 69.3 69.3 71.7 68.6

9 67.4 67.4 72.2 69.2 69.9 70.5 66.8 66.9 69.2

10 67.4 68.1 71.6 72.3 67.4 74.6 66.3 64.4 71.7

Table 11: Classification results achieved by SVM
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OA OP All dataset

Task Full RF10 RF400 Full RF10 RF400 Full RF10 RF400

1 71.0 70.5 68.0 64.5 67.4 66.3 68.7 70.5 69.9

2 60.2 61.4 60.2 59.0 63.8 63.2 63.3 63.9 63.3

3 62.1 66.3 65.7 69.3 68.6 71.7 67.5 70.4 70.4

4 59.6 64.4 60.8 64.5 67.4 62.0 60.2 63.8 63.2

9 62.6 60.1 63.8 66.9 62.0 71.1 64.4 68.0 60.8

10 63.8 66.2 65.1 66.8 70.4 67.4 65.7 67.4 69.3

Table 12: Classification results achieved by XGB

From the results we can select the best results per each task:

• Task 1: Random Forest Classifier on an on-paper dataset with features se-
lected by a Random Forest of 400 estimators. The parameters to get these
results are: max depth 20, min samples leaf 1, min samples split 200 and 200
estimators.

• Task 2: Gradient Boosting Classifier on an on-air dataset whose features
were selected by a Random Forest with 10 estimators. The parameters to
achieve these results are: learning rate 0.01, max depth 3, max features log2,
min samples leaf 4, min samples split 10, and 200 estimators.

• Task 3: Gradient Boosting Classifier on an on-paper dataset whose features
were selected by a Random Forest with 400 estimators. The parameters to
achieve these results are: learning rate 0.01, max depth 3, max features log2,
min samples leaf 2, min samples split 2, and 100 estimators.

• Task 4: Decision Tree classifier on a complete dataset (on-air and on-paper
features) whose feature selection process was performed by a decision tree
with 10 estimators. The parameters to achieve these results are: Criterion
entropy,max depth 5,max leaf nodes 10, min samples leaf 5 andmin samples
split 2.

• Task 9: Gradient Boost Classifier on an on-paper dataset whose feature
selection process was done by a Random Forest with 400 estimators. The

15



Cartaya, Gonzalez, Hartmann, Rivas ML/DL Project

parameters to achieve these results are: learning rate 0.1, max depth 7, max
features log2, min samples leaf 4, min samples split 2, and 100 estimators.

• Task 10: Gradient Boost Classifier on the complete dataset, whose features
were selected using a Random Forest of 400 estimators. The parameters to
achieve these results are: learning rate 0.1, max depth 5, max features sqrt,
min samples leaf 2, min samples split 10, and 50 estimators.

There are several takeaways from this observations: The best results come from
datasets that were modified by a feature selection process: four out of six task
showed better performance using 400 estimators and the other two, using 10
estimators. Second takeaway is that Gradient Boosting Classifier outperform the
selected methods, being just one instance in which the baseline decision tree
show better result.

On paper dynamics tend to be more descriptive when it comes to distinguish
among classes. 5 out of 6 tasks perfrom better with on paper tasks included, either
pure on-paper or combined in all dataset along the on-air ones.

6 DEEP LEARNING APPROACH

As mentioned before, part of the data obtained for this study, not only includes
the dynamic features from penmovement, either on-air or on-paper. There is also
the image of the pen traces for each of the tasks, obtained by the same protocol
mentioned in [5]. All images are gray-scale images with size 229 by 229 pixels.
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(a) Task 1 (b) Task 2 (c) Task3

(d) Task 4 (e) Task 9 (f) Task 10

Figure 1: Sample of one image per task

In order to analyze the images and use them as resources to automatically
classify them between healthy or cognitive impaired, we will use convolutional
neural networks (CNN) based on a transfer learning approach.

Transfer learning is a method used in deep learning (DL), that allows users to
take advantage of a previously trained neural network and adapt it to the studied
dataset. This can be achieved by freezing an amount of layers to keep the knowl-
edge and generalization capacity previously learned. New introduced data will use
this prior knowledge to train the unfrozen layers of the network, that generally
are the classifying ones.

The overall process can be described as:

• Search for a pre-trained model

• Freeze the parameters in the convolutional layers. This step presents a trade-
off between howmuch I want the network to learn frommy dataset, without
losing the existent generalization on known data.

• Add custom classifier layers on top of the base model.

• Train the new base plus custom classifier on your data.
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• Tune the hyperparameters before freezing all again.

Right now is easy to find several convolutional neural networks trained on a
lot of datasets. One of the most popular datasets is ImageNET [7], which has been
used to train several base models. In this project we will use four different models:
VGG19 [8], ResNET50[9], inceptionV3 [10] and inceptionResnetV2[11].

As briefly described above, next step would be decide the layers to unfreeze.
So as part of the experiment, there will be trials between 0 and 3 convolutional
layers. The next test will be evaluating different architectures of custom classifiers
placed on top of the base CNN.

(a) CNN structure
with droput layer

(b) CNN structure
with dense layers on
top

Figure 2: Custom Classifier architecture after base CNNmodel

Three custom classifier tests will be done, with the following structure:

• GlobalAveragePooling2D layer followed by 200-dense layer with ReLU as the
activation function and one final 2-dense layer classifier based on sigmoid
activation function. Following the b) structure in 2.

• GlobalAveragePooling2D layer followed by a 256-dense layer with ReLU acti-
vation function, then a 128-dense layer again with ReLU activation function,
then a 64-dense layer with ReLU activation function and finally a 2-dense
classifier layer using sigmoid as activation. Following the b) structure in 2.

• GlobalAveragePooling2D layer followed by a 256-dense layer with ReLU
activation function, then a 0.5-dropout layer and then a 2-dense classifier
layer with Softmax activation function. Following the a) structure in 2.

Finally, two optimization functions are to be tested. Adaptive Moment Estima-
tion Optimazer, mostly known as Adam and Stochastic Gradient Descent (SGD).

We can set this as a "grid search" in order to find the best performance. Other
required parameters for training convolutional networks are set as follows:

• Loss Function: Categorical Cross Entropy

• Batch Size: 10
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Parameter Values tested

Base CNN VGG19

inceptionResnetV2 (ir2)

Inception V3

Resnet50

Optimizer Adam

SGD

Layers to Unfreeze [0, 1, 2, 3]

Table 13: Handmade gridsearch for DL approach

• Epochs: 10

• Steps per epoch: is given by the formula 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

• Training metric: accuracy

6.1 PHASE 1

Having all set, a handmade gridearch 13 was done with 32 possible candidates
per task.

One important matter is that, even if is a good practice to augment data when
datasets are small (evaluated on an application basis), that was not the case in this
project. Previous experiments done on this dataset, showed that performance
overall was better if no data augmentation was done. With this in mind, the data
handling approach was a random subset for train and validation phases.

After running this first experiment, the top 4 results of each task are selected,
based on the area under the sensitivity and specificity curve, mostly known as re-
ceiver operator caracteristic curve, ROC. Other useful metrics are also calculated:
sensitivity, specificity, precision, f1-score, AUC, Matthew’s correlation coefficient
(MCC) and balanced accuracy (BA).
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6.2 PHASE 2

After this initial step, the top 2 of the top 4 best performers of each task,
were selected to do additional tests and improve the performance achieved so
far. They were retrained with more epochs than the initial training. The overall
performance of this second phase can be shown in the following images, were
training and validation loss and accuracies can be seen per epoch of training in 3.

(a) Task 1 (b) Task 2 (c) Task3

(d) Task 4 (e) Task 9 (f) Task 10

Figure 3: Training and loss per training and validation for each task

6.3 PHASE 3

An additional last step of experimenting is added. In this one, an ensemble
method is proposed, joining the best performers for each task. Results were
improved in tasks 1 and 2, compared to the initial training and the improved
training phases. The final selected models ended up being:

• Task 1: Phase 3 Ensemble of VGG19 + inceptionv3 for an AUC of 0.73, improv-
ing the result in 14

• Task 2: Phase 3 Ensemble of inceptionV3 + inceptionResnetV2 with an AUC
of 0.85 improving the result in 14.

• Task 3: Phase 2 VGG19 with an AUC of 0.90 improving the result in 14.

• Task 4: Phase 1 resnet50 with an AUC of 0.90.
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• Task 9: Phase 2 inceptionResnetV2 with an AUC of 0.89 improving the result
in 15

• Task 10: Phase 1 inceptionResnetV2.

7 DEEP FEATURES EXTRACTION

As a final step, following the research in [3], an advanced image analysis
method is used, in which, features proper of image analysis, are extracted using
convolutional neural networks. Once the image passes through a set of convo-
lutional layers, descriptive image features are selected and stored for further
machine learning analysis.

The data, coming from 100 image features, is then treated with the same
procedures used in section 5: A pipeline including gridsearch for hyperparameter
tuning within a frame of k-fold cross validation.

Classifiers selected in this section are: Random forest classifier, Decission Tree,
Support Vector Machine, Extreme Gradient Boosting and Multi-layer Perceptron
(MLP)
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Task 1

Classifier RFC DTC SVM XGB MLP

Accuracy 0.58 0.66 0.62 0.62 0.54

F1-Score 0.618 0.666 0.612 0.641 0.701

Precision 0.607 0.708 0.681 0.653 0.54

Recall 0.629 0.629 0.555 0.629 1.0

Task 2

Classifier RFC DTC SVM XGB MLP

Accuracy 0.72 0.64 0.76 0.7 0.46

F1-Score 0.758 0.639 0.777 0.716 0.0

Precision 0.709 0.695 0.777 0.730 0.0

Recall 0.814 0.592 0.777 0.703 0.0

Task 3

Classifier RFT DTC SVM XGB MLP

Accuracy 0.8 0.8 0.84 0.82 0.76

F1-Score 0.814 0.799 0.84 0.823 0.799

Precision 0.814 0.869 0.913 0.875 0.727

Recall 0.814 0.740 0.777 0.777 0.888

Table 16: Performance Achieved using Image Features. Tasks 1, 2, 3
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Task 4

Classifier RFT DTC SVM XGB MLP

Accuracy 0.75 0.770 0.729 0.833 0.520

F1-Score 0.777 0.8 0.648 0.846 0.684

Precision 0.724 0.733 1.0 0.814 0.520

Recall 0.84 0.88 0.48 0.88 1.0

Task 9

Classifier RFT DTC SVM XGB MLP

Accuracy 0.8 0.74 0.76 0.78 0.54

F1-Score 0.807 0.734 0.75 0.784 0.701

Precision 0.84 0.818 0.857 0.833 0.54

Recall 0.777 0.666 0.666 0.740 1.0

Task 10

Classifier RFT DTC SVM XGB MLP

Accuracy 0.78 0.7 0.7 0.8 0.54

F1-Score 0.799 0.716 0.736 0.827 0.701

Precision 0.785 0.730 0.7 0.774 0.54

Recall 0.814 0.703 0.777 0.888 1.0

Table 17: Performance Achieved using Image Features. Tasks 4, 9, 10

8 TEST RESULT AND CONCLUSION

Among the selected tasks for this project, one of the more complex appears to
be the task 1 due to how individual are each of the samples, not being possible to
compare the outcomes. N observations mean N complete different samples, not
being possible to graphically match one sample from a healthy patient with one
cognitive impaired patient.

This hypothesis could be the reason why in task 1, the analysis of the writing
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dynamics outperform the image analysis with the deep learning approach, also,
the deep learning feature analysis results may not present a good result. However,
present an improvement with respect to [3].

Another interesting detail is that as time passes by, the signature, as a common
activity in the human can lead individuals to memorize the pattern. This may
cause signing as a motor activity.

This is not the case for the other copy tasks, where repetitive patterns belong to
the form of the written trace in both healthy control group and cognitive impaired
patients. Tasks 9 and 10 have the best results using the deep learning approach as
discriminant. Deep learning features also present a good result comparing to the
dynamic features performance.

As per the graphic tasks, deep learning features appear to perform better,
and for task 2, the writing dynamic features seem to better discriminate between
patients.

In this fashion, would not be naive at all to say that depending on the type of
written task, one classifier would be more beneficial one approach or the other.
Copy tasks with unique forms like the signature, benefit from the dynamics of the
writing, considering on-air and on paper features.

Graphic tasks tend to perform better with deep learning features and copy
tasks, on the other hand perform better with the use of deep learning.

One important aspect is the fact that data augmentation was not used. Beyond
performing better when not using it, it would be pointless to distort patterns
that need to remain immutable at the moment of the analysis. One "bad" linear
transformation will definitely lead to a misclassified output.
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